
Sample Efficient Hyperparameter Optimization

Team 1

Korea Advanced Institute of Science and Technology, Korea

Abstract. As we have more complex machine learning algorithms, hy-
perparameter optimization is crucial for applying them in any machine
learning domain like search-based software engineering (SBSE) domains
or stochastic-based classification domains. Although off-the-shelf frame-
works for search algorithms provide default hyperparamters tuned by
developers, recent study has shown the impact of parameter tuning by
carrying out a large empirical analysis [1]. In hyperparameter optimiza-
tion problem, sample cost is very expensive. For example, in case of
search algorithm, since a fitness value of a parameter set, i.e. sample,
can be obtained after running a algorithm with that parameter set. In
this report, we propose a sample efficient hyperparameter optimization
algorithm which combines a Genetic Algorithm (GA) and Bayesian Op-
timization (BO) method. Our algorithm represents a chromosome as a
list of hyperparameters as to have modular nature. Since GAs gener-
ally do not consider uncertainty in the search space, we exploited BO to
predict the probability of improvement before actual evaluation of each
individual in the current population. With the guidance of BO, GA can
produce a population which has more promising individuals. We con-
ducted experiments on two different domain of machine learning; Neural
network using Convolutional Neural Network (CNN), Evolutionary algo-
rithm using Genetic Programming (GP). Experimental results show that
the combination of GA and BO helps in finding good hyperparameters
with a small number of evaluations.

Keywords: Parameter Optimization, Genetic Algorithm, Bayesian Op-
timization

1 Introduction

In any machine learning domain, most important goal of each solution is to pro-
duce best performance to solve their problem by optimization. After we choose
one machine learning algoritm as a solution for any problem, optimization is pos-
sible by tuning the hyperparameter. Generally, a proposed research algorithm
has default parameter set which is tuned by the effort of researcher, however
these default parameter set does not guarantee to provide optimal performance
to every different problems. For example, Search based Evolutionary Algorithm
such as Genetic Algorithm(GA) has many tunable parameters, e.g, crossover
rate, mutation rate, population size, elitism rate, selection method, and ,to ef-
fect the performance of algorithm. To find optimal performance, the set of pa-
rameters of specific problems needs to be tuned differently by each problem and



this hypothesis is already proven by previous empirical experiments parameter
tuning[1].

One of the critical barriers in hyperparameter tuning is efficiency of param-
eter optimizer. In case of search algorithm, since a fitness value of a parameter
set, i.e. sample, can be obtained after running a algorithm with that parame-
ter set. So, we need impossible expense in terms of computation and time to
apply optimization method. Recently, many improved approaches are proposed
to capture the efficiency of optimization in machine learning domains, Genetic
Algorithm(GA) is one of the emerged solution for it and Bayesian Optimiza-
tion(BO) is popular solution in neural network domain.

Our contribution in this report is two fold. First, we propose novel method of
hyperparameter optimization using a combination from both GA and BO. GA is
good solution for large search space based on the process of natural selection that
belongs to the larger class of evolutionary algorithms (EA) ,however, GA gener-
ally do not consider uncertainty in the search space. BO make smart decisions
based on the probabilistic model, but it works slower when number of hyperpa-
rameters increase. So we exploited BO to predict the probability of improvement
before actual evaluation of each individual in the current population. We show
that with the guidance of BO, GA can produce a improved population which
has more promising individuals. Second, we demonstrates that our method can
fit to a variety of machine learning algorithm, e.g, Neural Network(NN), Genetic
Programming(GP).

In order to confirm that our approach is applicable to various machine learn-
ing fields, we evaluate to show that our approach is work with two different
type of machine learning algorithms. We evaluate our method with simple Con-
volutional Neural Network(CNN) to verify in neural network domain using use
MNIST which is a well-known large database of handwritten digits. And, for
search algorithm verification, we also evaluate our method with Genetic Pro-
gramming(GP) to solve fault localization problem using FLUCCS datasets which
is contained feature data for 156 real world faults.

Section 2 reviews prior work in hyperparameter optimization. Section 3 de-
scribes explain the our approach. Section 4 describes comparison results of 1)
GA, 2) BO,3) GA and BO combination on both CNN and GP. Section 5 closes
with a conclusion and future work.

2 FOUNDATION

2.1 Genetic Algorithm for Hyperparameter Tuning

We chose the genetic algorithm as one way of parameter tuning. The basic con-
cept of our GA is similar with general one. The one thing different is we use
fitness evaluation as a result of search algorithm that use our target parameter.
Therefore, each generation contains the algorithm execution process. User can
choose number of population and generation and give the fitness function for
evaluation. Furthermore, user gives the hyper parameter configuration to pro-
gram. Each parameter option in hyper parameter configuration consists of type



of parameter and range of parameter. For example, [[int,0,4],[float,0,3.0],[int,0,5]]
can be one of instance of hyper parameter configuration.

The initialize process proceeds based on hyper parameter configuration. It
takes each parameter option and makes individual solution by using random
function. Each random parameter keeps the given type well. Create individual
solution for a given population number.

The evaluation process is done through a given fitness function with individ-
ual parameter set. Fitness function can be any search algorithm that has hyper
parameter. We store each fitness value of individual solution for using selection
process. Because this process has to execute the search algorithm with each
parameter set, it is the most costly process in the whole GA algorithm.

In selection process, we use linear rank selection to select the parents. Because
the difference in fitness value of individual solution is small, we do not choose
fitness proportional selection. If the difference in fitness value is small, then
selection probability of individual solution will be almost same. Then, selection
pressure of GA is too low to exploit the good solution. Also, we use stochastic
sampling to give solutions that are less likely to be picked. When we use only
GA for parameter tuning then the number of parents equal total population *
(1 elitism rate) and when we use GA with BO then number of parents are same
with population number.

We choose one point crossover to make children solution set. Length of in-
dividual solution is not quite long. Therefore, one point crossover is enough to
birth various children. Two parents make two children after crossover, therefore
number of children are same as number of parents.

After children are created, they undergo a mutation process. Mutation can
occur in each parameter of individual parameter set. We set the mutation rate
5% for each parameter. If a mutation occurs, the parameter value will reset by
random function. The reset parameter value keeps the type and range of initial
parameter option.

After the mutation process, new individual solutions will be chosen by elitism.
When we tune the parameter with only GA then we select elites of previous
generation with elitism rate and merge elites of previous generation and children.
They will be next generation. We determined elites of previous generation based
on fitness value. On the other hand, if we use both GA and BO then number of
children is number of population. Therefore, Replace some of the children with
elites from previous generations. Children to be replaced are determined via BO.

We do not set any special stopping criterion. Whole GA process is done after
given number of generation finished. After the GA process is complete, return
the best fitness value and its parameter set.

2.2 Bayesian Optimization

Bayesian optimization(BO) is useful to model a black box function that is hard to
described analytically. BO maintains a distribution of function, then update the
distribution when new data is observed. Finally it finds a point that maximize
the black box function, arg maxx∈A⊂Rd f(x). To find the maximal point we have



Fig. 1. Gaussian process approximation of objective function (from [4])

to search whole function domain, so it takes lots of time when the dimension
of domain increases. When BO is applied to GA, the block box function to be
estimated is fitness function.

To perform Bayesian optimization we used Gaussian processes with acquisi-
tion function. Gaussian processes generalize multivariate Gaussian distributions.
Multivariate Gaussian distribution is defined by mean vector and covariance ma-
trix, while Gaussian process is defined by mean function and covariance function.
It regards a function as a vector of infinite dimensions.

Gaussian process predicts a value of the object function at each point x as a
Gaussian distribution. When pre-observed Data Dt is given the distribution for
yt+1 is estimated as,

P (yt+1|Dt, xt+1) = N (µt(xt+1), σ2
t (xt+1 + σ2

noise)),

µt(xt+1) = kT [K + σ2
noiseI]−1y

σ2
t (xt+1) = K(xt+1, xt+1)− kT [K + σ2

noiseI]−1k

σ2
noise is a given value, K and k are a kernel matrix and vector derived from a

positive definite kernel, K. y is the t-dimensional vector of pre-observed values.
In our experiments, matern kernel is used for the kernel function.



As Gaussian processes observe new data point the variance of neighboring
region of the observed point decreases (Figure 1). That means the objective
function near the observed data becomes more accurate. So to efficiently update
distribution of function we have to observe a point which has a high variance.
While considering the variance reduction we have to find the the point that have
maximum objective function value. To deal with these two metrics acquisition
function is used representing the score for being selected as a next observa-
tion(Figure 1).

Two commonly used acquisition functions are expected improvement and
probability of improvement. Expected improvement is defined as following. y+

is maximum observed value

EI(x) = E[max(0, Yt+1 − y+)|Dt, xt + 1 = x]

Expected improvement is a reasonable metric But it sometimes gives zero and
makes it impossible to compare two distinct observation points. So we used
probability of improvement as acquisition function. It is defined as following.

PI(x) = P (y ≥ y+) = Φ((µ(x)− y+)/σ(x))

It measures the probability of our currently observed data over-performs previous
best one. Since the probability never goes zero. It is possible to compare any two
distinct observations. So we take the probability of improvement as acquisition
function. Whenever BO algorithm selects a new sample. It finds a sample that
has a highest acquisition function value.

3 Sample Efficient Hyperparameter Tuning

GA is good for exploring a very large search space. However, GA forms a gen-
eration without considering existence of similar solutions IN earlier generations.
If there existed an individual in earlier generations whose fitness value was not
good, it could be wasteful to evaluate the similar new-born individual. To tackle
this problem, we exploit BO to predict the probability of improvement for in-
dividuals in the candidate population. Instead of direct sampling from the ac-
quisition function of BO, we calculate the probability of fitness improvement
for each individual in the generation formed by genetic operations. By removing
unpromising entities in the candidate population, we can expect the population
to be filled with more promising solutions.

Algorithm 1 describes the details of the proposed method. At first, the first
generation is randomly initialized. After evaluating the current population P(t),
the probabilistic model is updated with fitness values of individuals in P(t).
After executing genetic operations to form P(t+1), the algorithm checks whether
each individual in P(t+1) is promising or not using the model. After removing
unpromising entities using a selection method, some elites are borrowed from
P(t).



Algorithm 1 Genetic Algorithm guided by Bayesian Optimization

1: Initialize P(0) randomly
2: for t=0 to MaxGenerations do
3: Evaluate population P(t)
4: Update the probabilistic model
5: Selection()
6: Crossover()
7: Mutate()
8: Form P(t+1)
9: Get probability of improvement for each individual in P(t+1)

10: Remove N ∗ ri individuals based on probability of improvement
11: Add N ∗ ri elites from P(t) to P(t+1) where ri is the elitism ratio
12: end for

4 Experiments

We compared the performance of the proposed method with GA and BO on two
search algorithms. Evaluation metric is the fitness of the best solution after eval-
uating 100 samples. We ran 10 times to beat randomness of search algorithms.

4.1 CNN Hyperparameter Tuning

Convolutional neural networks (CNN) are widely used in classifying images. We
tuned CNN which is designed to classify a hand written digit dataset [2]. Tunable
parameters were output size of the convolution layer, dropout rate in convolution
layers, maxpooling size, number of dense layers, dropout rate in dense layers
and learning rate. We used classification accuracy as a fitness value for the
hyperparameter set. Figure 2 shows the quality of hyperparamters tuned by
three algorithms. Overall, all algorithms provide quite good parameters mainly
caused by neatness of the dataset. In other words, the choice of parameters does
not have a large impact on the quality of the solution. However, as we can see in
the figure, the proposed method provides slightly better parameters than others
do.

4.2 GP Hyperparameter Tuning

The next experimental results came from GP hyperparmeter tuning. We imple-
mented GP to solve software fault localization problem. The implemented basic
features described in [3]. We tuned maximum tree depth, elitism size, crossover
rate and mutation ratio. We defined the fitness function in terms of normalized
ranking. The high fitness value means that faulty methods are highly ranked. As
shown in Figure 3, the best solution comes from GA. We expect it is mainly from
the randomness of the algorithm. However, the average fitness of the parameters
tuned by the proposed method is higher than others.



Fig. 2. Quality comparison of tuned CNN hyperparmeters

5 Conclusion

In this report, we proposed a hybrid hyperparameter tuning method which com-
bines GA and BO. We also evaluate the performance of the proposed method
for two search problems. Experimental results shows that the proposed method
is sample efficient, however, we need further experiments to validate the results.
Due to the sudden schedule changes, we were unable to complete experiments
on EVOSUITE [5]. We are planning to improve our algorithm and evaluate the
performance on other search algorithms and off-the-shelf SBSE tools including
EVOSUITE.

References

1. Arcuri, Andrea, and Gordon Fraser. ”Parameter tuning or default values? An em-
pirical investigation in search-based software engineering.” Empirical Software En-
gineering 18.3 (2013): 594-623.

2. THE MNIST DATABASE, http://yann.lecun.com/exdb/mnist/
3. Sohn, Jeongju, and Shin Yoo. ”FLUCCS: using code and change metrics to improve

fault localization.” Proceedings of the 26th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis. ACM, 2017.

4. Brochu, Eric and Cora, Vlad M and De Freitas, Nando. ”A tutorial on Bayesian
optimization of expensive cost functions, with application to active user modeling
and hierarchical reinforcement learning” ParXiv preprint arXiv:1012.2599, 2010.

5. http://www.evosuite.org/



Fig. 3. Quality comparison of tuned GP hyperparmeters


